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Fluvoxamine is a well-tolerated, widely available, inexpensive selective serotonin reuptake
inhibitor that has been shown in a small, double-blind, placebo-controlled, randomized
study to prevent clinical deterioration of patients with mild coronavirus disease 2019
(COVID-19). Fluvoxamine is also an agonist for the sigma-1 receptor, through which it
controls inflammation. We review here a body of literature that shows important
mechanisms of action of fluvoxamine and other SSRIs that could play a role in COVID-
19 treatment. These effects include: reduction in platelet aggregation, decreased mast cell
degranulation, interference with endolysosomal viral trafficking, regulation of inositol-
requiring enzyme 1α-driven inflammation and increased melatonin levels, which
collectively have a direct antiviral effect, regulate coagulopathy or mitigate cytokine
storm, which are known hallmarks of severe COVID-19.
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INTRODUCTION

Initially used to treat obsessive-compulsive disorder (OCD), fluvoxamine (FLV) has been shown to
have the strongest activity of all SSRIs at the sigma-1 receptor (S1R) with low-nanomolar affinity
(Narita et al., 1996). FLV agonism on S1R potentiates nerve-growth factor (NGF)-induced neurite
outgrowth in PC 12 cells (Nishimura et al., 2008; Ishima et al., 2014). S1R is a chaperone protein at
the endoplasmic reticulum with anti-inflammatory properties (Ghareghani et al., 2017). FLV’s anti-
inflammatory effects likely stem from its regulation of S1R, which modulates innate and adaptive
immune responses (Szabo et al., 2014). S1R is also an important regulator of inositol-requiring
enzyme 1α (IRE1)-driven inflammation (Rosen et al., 2019) (Figure 1).

FLV and other SSRIs regulate inflammatory cytokine activity and gene expression in both cell and
animal models of inflammation (Taler et al., 2007; Tynan et al., 2012; Rafiee et al., 2016; Ghareghani
et al., 2017; Naji Esfahani et al., 2019; Rosen et al., 2019). The potential of FLV to dampen cytokine
storm has implications in COVID-19. COVID-19 severity is associated with an increased level of
inflammatory mediators including cytokines and chemokines (Chen G. et al., 2020; Chen N. et al.,
2020; Huang et al., 2020; Tay et al., 2020). Other S1R agonists like fluoxetine have been reported to
have antiviral activity (Zuo et al., 2012; Bauer et al., 2019). These studies have raised interest in the
potential therapeutic role of FLV and S1R agonists in COVID-19 (Vela, 2020; Hashimoto, 2021).

This review illustrates mechanisms of action underlying anti-inflammatory and antiviral
properties of FLV. It covers preclinical studies on effects of FLV and S1R agonists on
inflammation, and summarizes currently available clinical data for FLV treatment in COVID-19.
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FIGURE 1 | Potential anti-COVID-19 mechanisms of action of fluvoxamine. Figure created using Biorender.
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Indications for Fluvoxamine
Fluvoxamine maleate is available as immediate release tablets and
controlled-release capsules. FLV is indicated to treat obsessions
and compulsions in patients with OCD. The half-life of FLV is
9–28 h depending on its formulation, and the recommended
dosage is 100–300 mg/day (FDA, 2012).

ORIGINAL MECHANISM OF ACTION

Serotonin Transporter Inhibition
FLV blocks reuptake of serotonin at the sodium-dependent
serotonin transporter (SERT) of the neuronal membrane,
enhancing actions of serotonin on 5HT1A autoreceptors
(Dell’Osso et al., 2005; FDA, 2012). FLV has negligible affinity
for α1-, α2-, β-adrenergic, muscarinic, dopamine D2, histamine
H1, GABA-benzodiazepine, opiate, 5-HT1, or 5-HT2 receptors
(Irons, 2005).

LIKELY MECHANISMS OF ACTION IN
COVID-19

Platelet Aggregation
Platelets lack the enzyme to synthesize serotonin (Ni and Watts,
2006). A SERT enables rapid uptake of serotonin from plasma
(Vanhoutte, 1991). During thrombosis platelets release serotonin,
facilitating hemostasis through platelet aggregation (Berger et al.,
2009) (Figure 1), and promotes recruitment of neutrophils
(Duerschmied et al., 2013). SSRIs can therefore increase
bleeding time (Leung and Shore, 1996) or reduce serum
serotonin by >80% and reduce neutrophil recruitment
(Duerschmied et al., 2013). Platelets from individuals treated
with SSRIs, and platelets from SERT knockout mice, show
decreased aggregation (Celada et al., 1992; Carneiro et al.,
2008; McCloskey et al., 2008). Measures of coagulation and
hemostasis were lower in patients with serotonergic
antidepressant than in patients without serotonergic
antidepressant (Geiser et al., 2011). A hyperserotonergic state
distinguishes COVID-19 and non-COVID-19 acute respiratory
distress syndrome, biochemically (Zaid et al., 2021) and clinically
(Helms et al., 2020a; Helms et al., 2020b). This is likely pathologic
across a multitude of organs (akin to serotonin syndrome, F.
Jalali—personal observation and communication) and may
originate from an immune-mediated (Althaus et al., 2020;
Nazy et al., 2021) state of platelet hyperreactivity (Zaid et al.,
2021), resulting in florid platelet degranulation of serotonin into
plasma.

A concomitant impairment of serotonin reuptake may
exacerbate this hyperserotonergic state. Serotonin clearance
relies on a healthy pulmonary endothelium (Thomas and
Vane, 1967; Joseph et al., 2013), that is injured in COVID-19
(Ackermann et al., 2020). Platelet serotonin liberation can be
reduced with chronic or early de novo SSRI use (Cloutier et al.,
2018), since SSRIs deplete serotonin content of platelets (Narayan
et al., 1998; Javors et al., 2000). Initiation of de novo SSRIs at later
stages of moderate to severe COVID-19, however, may be

unpredictably harmful given the existing hyperserotonergic
state (Zaid et al., 2021) unless counterbalanced by other
beneficial effects of SSRIs. Indeed, direct serotonin antagonism
specifically targeting the serotonin 2 A, B and C receptors with
drugs such as cyproheptadine or mirtazapine in this stage may be
beneficial and is being explored (F. Jalali—personal
communication).

Three trials assessing benefit of anticoagulants to treat
COVID-19 have paused enrollment of critically ill COVID-19
patients who require intensive care unit (ICU) support (NHLBI,
2020). Therapeutic blood thinners did not reduce need for ICU
admission in this patient-group. Since full doses of therapeutic
anticoagulants increase risk of internal bleeding, FLV could
perhaps inhibit blood clotting more safely.

Mast Cell Degranulation
Human mast cells (MCs) are a viral reservoir for RNA viruses
like HIV (Sundstrom et al., 2004). Retinoic acid-inducible gene-
I-like receptors of mast cells can detect RNA viruses (Fukuda
et al., 2013). Viruses can cause degranulation of MCs in a
Sphingosine-1-Phosphate (S1P) -dependent pathway (Wang
et al., 2012). MCs express angiotensin converting enzyme 2
(ACE2), the principal receptor for SARS-CoV-2 entry into cells,
thus defining a route by which MCs could become hosts for this
virus (Theoharides, 2020). Post-mortem lung biopsies of
COVID-19 patients have linked pulmonary edema and
thromboses to activated MCs (Motta Junior et al., 2020).
Antidepressants also decrease histamine release from MCs
(Ferjan and Erjavec, 1996). SSRIs like fluoxetine decreased
mRNA levels of protease-1 in MCs (Chen et al., 2008).
Therefore, SSRIs like FLV could reduce cytokine storms in
COVID-19 patients (Figure 1) because of atypical response
of MCs to SARS-CoV-2.

Lysosomotropism
S1R agonists like FLV and fluoxetine are lysosomotropic
(Hallifax and Houston, 2007; Kazmi et al., 2013).
Fluvoxamine has a predicted pKa of 8.86 (DrugBank, 2005;
Wishart et al., 2018) and is susceptible to protonation in the
physiological pH range. Less polar, unionized form of basic
drugs can easily cross membranes. Basic drugs like FLV can get
protonated in the lysosome, which hinders the now-charged
moieties from crossing membranes. β-coronaviruses, like
SARS-CoV-2 and mouse hepatitis virus (MHV), use
lysosomal trafficking to escape from infected cells (Ghosh
et al., 2020) (Figure 1). GRP78/BIP, a chaperone that
facilitates coronavirus infectivity (Chu et al., 2018; Ha et al.,
2020), is co-released with β-coronaviruses through this
pathway (Ghosh et al., 2020). The SARS-CoV open reading
frame protein 3A (ORF3a) (Gordon et al., 2020) is a viroporin
that localizes to lysosomes (Ghosh et al., 2020), disrupts their
acidification (Yue et al., 2018), and contributes to viral egress
(Lu et al., 2006; Castano-Rodriguez et al., 2018; Yue et al.,
2018). Given the lysosomal egress of β-coronaviruses from
infected cells, lysosomotropic drugs like FLV could have
antiviral effects in the virus laden lysosomes (Homolak and
Kodvanj, 2020) (Figure 1).
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Acid Sphingomyelinase
Lysosomotropic drugs displace acid sphingomyelinase (ASM)
from lysosomal membranes leading to its degradation (Breiden
and Sandhoff, 2019) (Figure 1). Treatment of mice with S1R
agonists like fluoxetine (Hashimoto, 2015) reduces both acid
sphingomyelinase activity and protein levels in neurons
(Gulbins et al., 2013). This is consistent with partial proteolysis
of acid sphingomyelinase by fluoxetine (Kornhuber et al., 2008).
Fluoxetine can efficiently inhibit entry and propagation of SARS-
CoV-2 in Vero-E6 cell lines (Schloer et al., 2020). It also exerts
antiviral activity against influenza A virus subtypes (Schloer et al.,
2020). S1R agonists like escitalopram and fluoxetine (Hashimoto,
2015) can prevent infection of Vero cells with vesicular stomatitis
virus pseudoviral particles presenting SARS-CoV-2 spike protein
(pp-VSV-SARS-CoV-2 spike) (Carpinteiro et al., 2020).
Antidepressants like amitriptyline also prevented infection of
human Caco-2 cells with SARS-CoV-2 and treating volunteers
with a low dose of amitriptyline prevented infection of freshly
isolated nasal epithelial cells with pp-VSV-SARS-CoV-2 spike
(Carpinteiro et al., 2020). Inhibition of acid sphingomyelase by
these drugs can prevent the conversion of sphingomyelin to
phosphorylcholine and ceramide. Because high ceramide in the
cell membrane facilitates viral entry, this reduction in ceramide
may prevent infection (Carpenteiro et al., 2020). Therefore,
functional inhibition of acid sphingomyelinase by
lysosomotropic drugs is another avenue of viral control by
antidepressants.

Sigma-1 Receptor Activity
S1R was discovered in 1976 (Martin et al., 1976) and cloned in 1996
(Hanner et al., 1996). It regulates ER-mitochondrial Ca2+ signaling and
cell survival (Hayashi and Su 2007). Targeting S1R with FLV regulates
cytokine production in human monocyte-derived dendritic cells
(Szabo et al., 2014). S1R knockout (KO) bone marrow-derived
macrophages (BMDMs) were proinflammatory in endotoxic shock
models. They had higher levels of IL-6 and IL-1βmRNAand increased
IL-6 protein secretion compared to wild-type (WT) BMDMs (Rosen
et al., 2019). In contrast, anti-inflammatory cytokine IL-10 expression
was unaffected in S1R KO BMDMs (Rosen et al., 2019). S1R
overexpression in HEKs expressing mTLR4/MD2/CD14 was anti-
inflammatory in an endotoxic shock model. Compared to HEKs with
normal levels of S1R, cells with higher levels of S1R had lower IL-8
levels on LPS stimulation (p < 0.05). In other systems, FLV upregulates
IL-10 (Kalkman and Feuerbach, 2016; Nazimek et al., 2017). FLV via
the S1R may therefore modulate SARS-CoV-2-induced
hyperinflammatory state (Figure 1).

On the flip side, genetic perturbation screens have shown
depletion of S1R, decreases SARS-CoV-2 viral replication in
adenocarcinoma human alveolar basal epithelial cell lines
expressing Angiotensin I Converting Enzyme 2 (A549-ACE2)
(Gordon et al., 2020). Consistent with this genetic data, S1R
agonists such as dextromethorphan can increase viral replication
(Gordon et al., 2020). However, in contrast, researchers reviewing
medical billing data for nearly 740,000 COVID-19 patients in the
US showed patients on antipsychotic drugs targeting S1R were
half as likely as those on other types of antipsychotic drugs to
require mechanical ventilation (Gordon et al., 2020).

Neurotropism is one common feature for human coronaviruses
(Bale, 2015; Dube et al., 2018). Various receptors could be involved
in neurotropism and neuronal cell entry of SARS-CoV-2
(Armocida et al., 2020). Sigma receptors are widely expressed in
the CNS (Yesilkaya et al., 2020). Downregulation of S1R protein
expression impairs initiation of hepatitis C virus (HCV) RNA
replication in human hepatoma cells (Friesland et al., 2013).
BD1047 a selective S1R antagonist blocked cocaine-mediated
stimulation of human immune deficiency virus (HIV-1)
expression in neuronal mononuclear phagocytes like microglia
(Gekker et al., 2006). S1R could therefore be involved in neuronal
transmission of other RNA viruses like SARS-CoV-2.

Inositol-Requiring Enzyme 1α and
Autophagy
Endotoxin-stimulated TLR4 activates IRE1 (Martinon et al., 2010)
and regulates proinflammatory cytokine production (Qiu et al.,
2013). SARS-CoV E protein down-regulates IRE1 pathway and
the SARS-CoV lacking the envelope (E) gene (rSARS-CoV-ΔE) is
attenuated in vivo (DeDiego et al., 2011). IRE1 inhibitors like STF-
083010 rescued S1R KO mice in a model of endotoxemia (Rosen
et al., 2019). IRE1 is essential for autophagy during infection with a
gamma coronavirus-Infectious Bronchitis Virus (IBV) (Fung and
Liu, 2019). SARS-CoV replicase proteins nsp2, 3 and 8 occur in
cytoplasmic complexes and colocalize with LC3, a proteinmarker for
autophagic vacuoles (Prentice et al., 2004). The viral replicase protein
nsp6 of IBV activates autophagy in a screen (Cottam et al., 2011).
Other studies reviewed here (Yang and Shen, 2020) suggest
autophagy is not directly involved in SARS-CoV. These
discrepancies are probably because of different viruses and cells
tested in various studies.

Melatonin
SARS-CoV-2 virus can activate NLRP3 inflammasome (van den
Berg and Te Velde, 2020), which along with NF-κB activation can
induce cytokine storm (Ratajczak and Kucia, 2020). Melatonin can
mitigate inflammation through these pathways and melatonin
exposure post-intubation is associated with a positive outcome
in COVID-19 (and non-COVID-19) patients (Garcia et al., 2015;
Ramlall et al., 2020). FLV can elevatemelatonin levels via inhibition
of CYP1A2, a member of the cytochrome P450 superfamily of
enzymes (Hartter et al., 2001) (Figure 1).

COULD SELECTIVE SEROTONIN
REUPTAKE INHIBITORS AND SIGMA-1
RECEPTOR AGONISTS HAVE DIRECT
ANTIVIRAL EFFECTS ONOTHER VIRUSES?

Precedent for Using Selective Serotonin
Reuptake Inhibitors to Treat Other Viral
Infections
Enteroviruses are non-enveloped RNA viruses. Their
nonstructural protein 2C is one of their most conserved
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proteins and contains ATPase activity and putative RNA helicase
activity (Cheng et al., 2013). Fluoxetine has in vitro antiviral
activity against Enterovirus B and D species (Zuo et al., 2012;
Ulferts et al., 2013). Fluoxetine binds nonstructural protein 2C
directly (Manganaro et al., 2020). Some fluoxetine resistant
variants of enteroviruses like coxsackievirus B3 and B4 have
mutations in protein 2C (Ulferts et al., 2013; Alidjinou et al.,
2019). This reinforces the idea that interaction between fluoxetine
and protein 2C is essential for its antiviral effects.

Endoplasmic Reticulum Stress Response
Viral infection may trigger the unfolded protein response (UPR).
This is an ER stress response because of ER overloading with
virus-encoded proteins (Kim et al., 2008), and can also induce
autophagy (Bernales et al., 2006; Ogata et al., 2006). ER signaling
proteins like IRE1, PRKR-like ER kinase (PERK), and activating
transcription factor 6 (ATF6) regulate UPR. The UPR is involved
in viral replication and modulates host innate responses (Xue
et al., 2018). Virus-induced ER stress is required for autophagy
activation, viral replication, and pathogenesis in dengue (Lee
et al., 2018). Murine cytomegalovirus activates the IRE1 pathway
to relieve repression by X-box binding protein 1 unspliced mRNA
(Hinte et al., 2020). Coronavirus infection induces ER stress and
triggers UPR (Fung et al., 2016). The S protein in β-coronaviruses
modulates UPR to facilitate viral replication (Chan et al., 2006;
Versteeg et al., 2007). The α-coronavirus, transmissible
gastroenteritis virus (TGEV) triggers UPR-induced ER stress
primarily through activation of PERK-eukaryotic initiation
factor 2α axis (Xue et al., 2018). Thus ER stress response is
critical in host-virus interactions in a variety of infections. We
have discussed above how S1R is a regulator of IRE1 and
autophagy. S1R agonists like FLV could therefore have a role
in regulating viral infections beyond SARS-CoV-2 through its
putative regulation of ER stress and UPR.

PRECLINICAL EFFECTS OF FLUVOXAMINE
ON INFLAMMATION

S1R KO mice display increased mortality compared to WT in
sublethal models of sepsis (Rosen et al., 2019). Peak serum TNF
and IL-6 were increased in LPS-challenged S1R KO mice. S1R
ligand FLV enhanced survival in mouse models of IRE1-mediated
inflammation and fecal-induced peritonitis. FLV treatment
protected WT mice from endotoxic shock-induced death,
while no significant effect was observed in S1R KO animals
suggesting the anti-inflammatory effects of FLV are likely
mediated through S1R.

Multiple sclerosis (MS) is a chronic, inflammatory,
demyelinating neurodegenerative disease. SSRIs like sertraline
have been shown to have immunomodulatory effects in
experimental autoimmune encephalomyelitis (EAE), a mouse
model of MS (Taler et al., 2011), and in a rat model of
rheumatoid arthritis (Baharav et al., 2012). FLV reduces the
severity in EAE in rats, even when treatment began 12 days
post-induction of EAE (Ghareghani et al., 2017). FLV-treated
EAE rats showed a decrease in IFN-γ serum levels and an increase

in IL-4, pro- and anti-inflammatory cytokines respectively,
compared to untreated EAE rats. The dose of FLV used in
these experiments extrapolates (by surface area) to FLV doses
approved for human use.

Thus, FLV seems to ameliorate inflammation in different in
vivo inflammation models. Data in non-human primates or a
hamster model of SARS-CoV-2 infection would shed further light
on whether FLV might be a useful drug for COVID-19 patients
and on the mechanism(s) at play.

CLINICAL EFFECTS OF FLUVOXAMINE IN
COVID-19

In a double-blind, randomized, preliminary study of adult
outpatients with symptomatic COVID-19, 80 patients treated
with FLV, compared to 72 treated with placebo, had a lower
likelihood of clinical deterioration over 15 days (Lenze et al.,
2020). Eligible patients were enrolled within 7 days of symptom
development. These data are provocative with none of the FLV-
treated patients deteriorating vs. 8.3% patients in the control arm
who showed clinical deterioration. Participants received 50 mg
FLV QD on day 1, then for 2 days 100 mg FLV BID, and then
100 mg FLV TID as tolerated through day 15 and then stopped.
In a prospective study on use of FLV for early treatment of
COVID-19 the incidence of hospitalization was 0% (0/65) with
FLV and 12.5% (6/48) with observation alone. At 14 days, 0% (0/
65) of FLV treated people had persistent residual symptoms
compared to 60% (29/48) among people who opted for no
therapy (Seftel and Boulware, 2021). Agonists of S1R like
escitalopram and fluoxetine were associated with lower risk of
intubation or death (p < 0.05) because of COVID-19 in a
multicenter observational retrospective cohort study (Hoertel
et al., 2021).

Given the multiple roles of S1R reviewed here in
inflammation, platelet aggregation, antiviral activity etc. and
the recent striking human data, it is likely that S1R agonists
like FLV could have a major impact on disease progression of
COVID-19 patients in the early stage of the disease.

DISCUSSION

An 880 patient randomized study is underway and should
provide some definitive answers (Lenze, 2020). Patients
nationally can join this study from home and at no cost.
However, given the current crisis, which is expected to worsen
before a vaccine takes effect, one wonders if the FLV evidence in
COVID-19 is strong enough to consider a change in practice
guidelines, to even more quickly accumulate data on outcomes in
COVID-19 patients (Sukhatme and Sukhatme, 2021). A small
group of healthcare systems could consider this approach and
simultaneously set up tools, e.g., a local or regional repository to
track outcomes in real-time. If the efficacy is similar to the small
randomized trial (Lenze et al., 2020), it should be evident in such
data. Out of caution, the practice guidelines could urge caregivers
to consider administering FLV only to those COVID-19
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+ patients at highest risk for disease progression, and who do not
have access to one of the monoclonal antibodies that have been
given emergency use authorizations by the FDA (FDA, 2020a;
FDA, 2020b). Also, these guidelines could be revised at any time.

Small biomarker intensive trials should be planned to assess
antiviral, immunomodulatory, anti-thrombotic effects or other
effects in patients treated with FLV. One could incorporate tools
such as single cell RNA and protein analysis in such studies.
While human data is being gathered, additional preclinical data in
cell culture systems like co-cultures of human epithelial and
immune cells would be useful (Grunwell et al., 2019). Data
from non-human primate and hamsters would provide
valuable information on optimal timing of drug, amount
needed for efficacy, and which among the myriad mechanisms
of action might be most relevant.

There may be a role for serotonin modulation in the inpatient
setting. Indeed, if this drug is not working primarily as an
antiviral but rather through other mechanisms (e.g.,
immunomodulatory, anti-platelet), it may be efficacious in this
setting where hyperinflammatory responses and thrombotic
events drive disease pathology. However, there will need to be
vigilance for emergence of a hyperserotonergic state with
similarities to serotonin syndrome, as noted earlier. Thus it
may make sense to initiate fluvoxamine in the less severe
hospitalized patients but administer a serotonin 2 A, B and C
receptor antagonist such as cyproheptadine or mirtazapine in the
more severe patients (along with fluvoxamine). It is also tempting

to speculate on a role for FLV in COVID-19 long-haulers. There
are likely to be subsets in this heterogeneous group that may have
an aberrant immune response that has lingered on, in which FLV
may be efficacious. Finally, there may be a role for FLV in the
treatment of other viral illnesses in which there is some version of
a cytokine storm present (Fajgenbaum and June, 2020).
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